A Discontinuous Finite Element Approximation of Quasi-static Growth of Brittle Fractures

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Discontinuous Finite Element Approximation of Quasi-static Growth of Brittle Fractures

We propose a discontinuous finite element approximation for a model of quasi-static growth of brittle fractures in linearly elastic bodies formulated by Francfort and Marigo, and based on the classical Griffith’s criterion. We restrict our analysis to the case of anti-planar shear and we consider discontinuous displacements which are piecewise affine with respect to a regular triangulation.

متن کامل

Ambrosio-tortorelli Approximation of Quasi-static Evolution of Brittle Fractures

We define a notion of quasistatic evolution for the elliptic approximation of the Mumford-Shah functional proposed by Ambrosio and Tortorelli. Then we prove that this regular evolution converges to a quasi static growth of brittle fractures in linearly elastic bodies.

متن کامل

A Model for the Quasi-static Growth of Brittle Fractures: Existence and Approximation Results Gianni Dal Maso and Rodica Toader

We give a precise mathematical formulation of a variational model for the irreversible quasi-static evolution of brittle fractures proposed by G.A. Francfort and J.-J. Marigo, and based on Griffith’s theory of crack growth. In the two-dimensional case we prove an existence result for the quasi-static evolution and show that the total energy is an absolutely continuous function of time, although...

متن کامل

A Model for the Quasi-static Growth of Brittle Fractures Based on Local Minimization

We study a variant of the variational model for the quasi-static growth of brittle fractures proposed by Francfort and Marigo in [9]. The main feature of our model is that, in the discrete-time formulation, in each step we do not consider absolute minimizers of the energy, but, in a sense, we look for local minimizers which are sufficiently close to the approximate solution obtained in the prev...

متن کامل

Discontinuous Finite Element Approximation of Quasistatic Crack Growth in Finite Elasticity

We propose a time-space discretization of a general notion of quasistatic growth of brittle fractures in elastic bodies proposed in [13] by G. Dal Maso, G.A. Francfort, and R. Toader, which takes into account body forces and surface loads. We employ adaptive triangulations and prove convergence results for the total, elastic and surface energies. In the case in which the elastic energy is stric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Functional Analysis and Optimization

سال: 2003

ISSN: 0163-0563,1532-2467

DOI: 10.1081/nfa-120026378